Physics III	
031	
$18 / 11 / 2015$ 8.30am - 11.30am	

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2015

SUBJECT: PHYSICS

PAPER III: PRACTICAL

COMBINATIONS: PHYSICS -CHEMISTRY- MATHEMATICS (PCM) PHYSICS -CHEMISTRY- BIOLOGY (PCB)

MATHEMATICS- PHYSICS-GEOGRAPHY (MPG)
MATHEMATICS-PHYSICS- COMPUTER SCIENCE (MPC)
PHYSICS-ECONOMICS - MATHEMATICS (PEM)

DURATION: 1HOUR 30 MINUTES
INSTRUCTIONS TO CANDIDATES:

1. Do not open this question paper until you are told to do so.
2. This paper consists of one compulsory question. (40 marks)
3. You may use non-programmable calculator and mathematical set where appropriate.
4. All answers should be written in the answer booklet provided.
5. Avoid writing your identification (school, index number, telephone number, names...) on one white sheet of paper provided.

Insert and attach the sheet of paper used into the answer booklet and submit both to avoid being treated as a cheat.
6. The diagram drawn on one white sheet of paper will be marked.
7. Use only blue pen and pencil.

ANSWER ALL QUESTIONS (40 MARKS)

In this experiment you will determine the critical angle of the equilateral triangular glass prism provided.

Apparatus required: 1 equilateral triangular glass prism, $\mathbf{3}$ optical pins,
4 drawing pins, 1 plane soft board, 1 plane white sheet of paper A4, 1 pencil with rubber, and 1 ruler
(a) Fix a plane white sheet of paper on a soft board using 4 drawing pins provided.
(b) Place the equilateral triangular glass prism in the middle of the white sheet of paper pinned on the soft board, using a pencil, trace its outline ABC as shown below.

(c) Stick an optical pin P_{1} at O , a distance $\mathrm{d}=1.0 \mathrm{~cm}$ from A.
(d) View the bright image of the optical pin P_{1} from the side BC of the equilateral triangular glass prism. With your eye in this position, fix optical
pins P_{2} and P_{3} such that they are in line with the image of the optical pin P_{1} at O .
(e) Remove the prism and optical pins.
(f) Draw a line passing through two points P_{2} and P_{3} to meet the line BC at D.
(g) Draw a perpendicular line to $A B$ passing through point O to meet $A B$ at T.
(h) Mark a point I on the perpendicular line drawn in (g) above such that $\mathrm{OT}=\mathrm{TI}$.
(i) Draw a straight line from I to D and label the point E where it intersects with side AB .
(j) Measure and record the distances OE and OI as x and y with 1 decimal place respectively.
(k) Put back the prism in its original position and repeat the procedures (c) to (j) for $\mathrm{d}=1.5,2.0,2.5,3.0,3.5 \mathrm{~cm}$.
(1) Tabulate your results and include the values x^{2} and y^{2} with 2 decimal places each.
(17 marks)
(m) Plot a graph of y^{2} against x^{2}.
(n) Find the slope S of your graph.
(o) Compute the critical angle of refraction c of the glass prism from the expression $c=\cos ^{-1}\left(\frac{1}{2} \sqrt{S}\right)$. Is the obtained result reasonable? Comment.
(p) Submit the used white sheet of paper.

