# **Physics III**

031

18/11/2015 8.30am - 11.30am



## **ADVANCED LEVEL NATIONAL EXAMINATIONS, 2015**

SUBJECT: PHYSICS

PAPER III: PRACTICAL



COMBINATIONS: PHYSICS -CHEMISTRY- MATHEMATICS (PCM)

PHYSICS -CHEMISTRY- BIOLOGY (PCB)

MATHEMATICS- PHYSICS-GEOGRAPHY (MPG)

MATHEMATICS-PHYSICS- COMPUTER SCIENCE (MPC)

PHYSICS-ECONOMICS - MATHEMATICS (PEM)

#### **DURATION: 1HOUR 30 MINUTES**

#### **INSTRUCTIONS TO CANDIDATES:**

- 1. Do not open this question paper until you are told to do so.
- 2. This paper consists of **one** compulsory question. (40 marks)
- 3. You may use non-programmable calculator and mathematical set where appropriate.
- 4. All answers should be written in the answer booklet provided.
- 5. Avoid writing your identification (school, index number, telephone number, names...) on one white sheet of paper provided.
  - **Insert** and **attach** the sheet of paper used into the answer booklet and submit both to avoid being treated as a cheat.
- 6. The diagram drawn on one white sheet of paper will be marked.
- 7. Use only blue pen and pencil.

### **ANSWER ALL QUESTIONS (40 MARKS)**

In this experiment you will determine the critical angle of the equilateral triangular glass prism provided.

Apparatus required: 1 equilateral triangular glass prism, 3 optical pins,

4 drawing pins, 1 plane soft board, 1 plane white sheet of paper A4, 1 pencil with rubber, and 1 ruler

- (a) Fix a plane white sheet of paper on a soft board using 4 drawing pins provided.
- (b) Place the equilateral triangular glass prism in the middle of the white sheet of paper pinned on the soft board, using a pencil, trace its outline ABC as shown below.



- (c) Stick an optical pin  $P_1$  at O, a distance d=1.0 cm from A.
- (d) View the bright image of the optical  $pin P_1$  from the side BC of the equilateral triangular glass prism. With your eye in this position, fix optical

pins  $P_2$  and  $P_3$  such that they are in line with the image of the optical pin  $P_1$  at O.

- (e) Remove the prism and optical pins.
- (f) Draw a line passing through two points  $P_2$  and  $P_3$  to meet the line BC at D.
- (g) Draw a perpendicular line to AB passing through point O to meet AB at T.
- (h) Mark a point I on the perpendicular line drawn in (g) above such that OT=TI.
- (i) Draw a straight line from I to D and label the point E where it intersects with side AB.
- (j) Measure and record the distances OE and OI as x and y with 1 decimal place respectively.
- (k) Put back the prism in its original position and repeat the procedures (c) to (j) for d=1.5, 2.0, 2.5, 3.0, 3.5 cm.
- (l) Tabulate your results and include the values  $\chi^2$  and  $\chi^2$  with 2 decimal places each. (17 marks)

(m) Plot a graph of  $y^2$  against  $x^2$ . (14 marks)

- (n) Find the slope S of your graph. (2 marks)
- (o) Compute the critical angle of refraction c of the glass prism from the expression  $c=\cos^{-1}(\frac{1}{2}\sqrt{S})$ . Is the obtained result reasonable? Comment.

(4 marks)

(p) Submit the used white sheet of paper. (3 marks)